The relationship between glycosylation and glycoprotein metabolism of mouse neuroblastoma N18 cells.
نویسندگان
چکیده
Two inhibitors of glycosylation, glucosamine and tunicamycin, were utilized to examine the effect of glycosylation inhibition in mouse neuroblastoma N18 cells on the degradation of membrane glycoproteins synthesized before addition of the inhibitor. Treatment with 10 mM-glucosamine resulted in inhibition of glycosylation after 2h, as measured by [3H]fucose incorporation into acid-insoluble macromolecules, and in a decreased rate of glycoprotein degradation. However, these results were difficult to interpret since glucosamine also significantly inhibited protein synthesis, which in itself could cause the alteration in glycoprotein degradation [Hudson & Johnson (1977) Biochim. Biophys. Acta 497, 567-577]. N18 cells treated with 5 microgram of tunicamycin/ml, a more specific inhibitor of glycosylation, showed a small decrease in protein synthesis relative to its effect on glycosylation, which was inhibited by 85%. Tunicamycin-treated cells also showed a marked decrease in glycoprotein degradation in experiments with intact cells. The inhibition of glycoprotein degradation by tunicamycin was shown to be independent of alterations in cyclic AMP concentration. Polyacrylamide-gel electrophoresis of isolated membranes from N18 cells, double-labelled with [14C]fucose and [3H]fucose, revealed heterogeneous turnover rates for specific plasma-membrane glycoproteins. Comparisons of polyacrylamide gels of isolated plasma membranes from [3H]fucose-labelled control cells and [14C]fucose-labelled tunicamycin-treated cells revealed that both rapidly and slowly metabolized, although not all, membrane glycoproteins became resistant to degradation after glycosylation inhibition.
منابع مشابه
The Relationship of Secretion and Activity of Recombinant Factor IX with N-Glycosylation
Background: Human coagulation factor IX (hFIX) is a glycoprotein with two N-glycosylation sites at the activation peptide. Since the activation peptide is removed in mature hFIX, the exact role of N-glycosylation is unclear. To investigate the role of N-glycosylation in the secretion and activity of hFIX, we inhibited N-glycosylation by tunicamycin in the stable Human Embryonic Kidney (HEK)- c...
متن کاملTubulin constancy during morphological differentiation of mouse neuroblastoma cells
Clonal cell lines N18 and N103 of the mouse neuroblastoma C1300 possess an undifferentiated neuroblast morphology under optimal growth conditions; however, when deprived of serum, N18 can be induced to extend long neurites. Although initial neurite outgrowth is rapid, very long fibers are found only after several days. Both initial outgrowths and established neurites contain microtubules; howev...
متن کاملA single mutation in the E2 glycoprotein important for neurovirulence influences binding of sindbis virus to neuroblastoma cells.
The amino acid at position 55 of the E2 glycoprotein (E2(55)) of Sindbis virus (SV) is a critical determinant of SV neurovirulence in mice. Recombinant virus strain TE (E2(55) = histidine) differs only at this position from virus strain 633 (E2(55)= glutamine), yet TE is considerably more neurovirulent than 633. TE replicates better than 633 in a neuroblastoma cell line (N18), but similarly in ...
متن کاملProteins from morphologically differentiated neuroblastoma cells promote tubulin polymerization
Clonal cells (N18) of the mouse neuroblastoma C-1300 can be induced to undergo a morphological differentiation characterized by the outgrowth of very long neurites (> 150 microns) that contain many microtubules. Because the marked increase in the number and length of microtubules is apparently not due to an increase in the concentration of tubulin subunits, the possible role of additional macro...
متن کاملAmino acid changes in the Sindbis virus E2 glycoprotein that increase neurovirulence improve entry into neuroblastoma cells.
Sindbis virus (SV) is an alphavirus that causes encephalitis in mice and results in age-dependent mortality. The outcome is dependent on the virus strain. Residues at 55 and 172 in the E2 glycoprotein determine the neurovirulence for mice of different ages and the efficiency of replication in the nervous system and neuronal cells. To determine the effects of these two residues on the initial st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 191 1 شماره
صفحات -
تاریخ انتشار 1980